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Optimal problems for linear system have been considered by many authors in connection with 

the problem of moments [l]. In [2] th eir solution is reduced to finding the minimax of ceIc 

tain known functions of special form, and in [3] to finding the maximum of a linear function- 
al on a set which is itself determined from the maximum condition. Other modifications of 
the problem have also been investigated 14 and s]. 

In the present paper, as an addendum to the results of [ l] concerning the problem of time- 
optimal pulse operation, we propose to demonstrate the validity of the following statement: 
by virtue of the conditions set forth in the solution of [1], finding the minimax can be ri- 
placed by the maximum problem (Sections 2 and 3). 

We shall also give an elementary proof of the statement of [4] concerning the number of 
controlling pulses (Section 3). A method for approximating solutions of linear differential 
equations by means of polynomials in order to simplify the computational side of the problem 

is described (Section 4). 

1. Formulation of the problem. Let us consider the completely controlled sys- 

iem [6] described by Eq. 
dy / dt = Ay + bu 

where A is an n x n constant matrix; y and b are n-dimensional vectors; Y is the scalar con- 
trol. 

By virtue of the complete controllability of the system, we can apply differentiation, el- 

imination, and normalization of the control to form an equation in some linear combination f: 
of phase coordinates 

z(n) + a,2 (=I) + . . . + URZ = u (1.1) 

We shall solve for Eq. (1.1) the problei of timeoptimal motion from a given point (xo, 
Q) ,..., x~(“-~) ) to the origin on the set of all scalar controls with an integrable abeolute 
value under the restriction 

09 

Let us denote the matrix of the normal system of independent solutions of Eq. (1.1) for 
I) = 0 by V(t), and t!‘e instantaneous phase vector by z(t), 

II (Q . . . 2, (‘) z(t) 

I 

z (0) 
V(f)= . . . . . . . . . . . ’ z(t)= * . . * ’ z(O)= a... 

zp-1) (t) . . . q&+1)(l) z@-l) (t) #-1) (0) 

y(k) = dk,r - 
dtk ’ 

qyO)= 4k 

127 



The group property of the solntione of differentfni cqoationo implies, as we know, the 

identity V-t(t) = Vf- t). From [2f we infer the following result. 

The optimal control u” is a pulse control, 

uu = f&t 0 (r - tJ + . . + pra (r - Gl) (1.2) 

where 8(t - tt ) are delta ;unctions. 

The sum of absolute values of the controlling pulses 4 is maximal, 1 pII +...+ 1~1 = 1. 

The instants tt ,..., I, of application of the pulses are determined by the solution of the 

nro bl em 

under the condition 
n n 

(1.4) 

The optimal operating time To is the smallest of all the T which satisfy not only (1.3), 
but also the “hit” conditions 

_ .&pt = 2 .ZTn(h)(-t*) pi (k = 0, . . ., n - i) (1.5) 

i=l 

We shail investigate conditions (1.2) to (1.5) with the aim of simplifying the actnal syn- 

thesis of tbe optimal control. 
i‘ e shall use the notation x,(- t) = ~$(t). The function-~(~) satisfies the differential Eq. 

p) - alcp (n-l)+...+(-i)na,(p=O (1.6) 
snd the initia1 conditions 

q%(t))=*..=. q@‘)(O) = 0, 

Eqs. (1.3) and (1.5) then become 

#+r) (3) = (- i)u-1 

(_.+‘c*qwf (t) = 

I I h-1 

snd 

- ,0(k) = -jj (- i)*cp@) (tt) pg 

i-1 
te*pectfvcly. 

We note that the function 

F (c, t) S i (-i)“‘-‘ckf#(‘-l) (1) 

Ii -8) 

ia the geueral soladoa of Eq. (1.6), since by virtue of the initial conditions for #(t) at t = 0 
the Wronskian 

W(O) * * . p-1) (0) 0 . * * (- I)=1 

. . . . . . . . . = . . . . . . . . . . =(_ ~)~o+l) 

q@"(O). . 
(f.9) 

. fp-8) (0) (- iy-1 , . .qw-S) (0) 
ia differmt from zero. 

2. Ancillary propositions. lo. We introduce the conditiona 
sign F (e, fl) = sign pf (2.1) 
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for 8dh & 4 0, t 

a18o appear in [4 
,..., t,, and I1 ,..., 

n. 

t, which i8 a 801UtiOn of .pmblam (1.3). (?h888 r818tion8 

L e m m a 2.1. Let Eqa. (1.71 and (1.8) be fuIfilI8d. ‘fb~n fuI5Ihn~mt of any two Of the 
three conditioni (1.21, (1.41, and (2.1) impIie8 faIfiIlm8nt of the third. 

Proof. Multiplying each Eq. of (1.8) by ak+t and 8umming over k, we obtain 

k-0 i-1 k-0 i-l 

It is clear that for ck and t, which constitute a solution of problem (1.7) we have th8 re- 

lation F (c, t,) = sign F (c, t,). Thus, 
n-1 

- 2 'k+lxO 
(1.1 - - i pfsignF(c, $1 

ha0 i=l 

Let conditions (1.4) and (2.1) be fulfilled. Then 
n-1 r r 

1 = - 2 ck+lxo(k) = $J i.+sign F (c, $1 = 2 P1sif3np,= 2 Ipf I 

k=O i=l i==l i-1 

If conditions (1.4) and (2.1) are fulfilled, then 
n-1 

- 2 C,,+lxo(h’ = i: pi sign F (c, ti) = jJ I Pf I = 1 
h=O bl c-0 

Finally, let conditions (1.2) and (1.4) be fulfilled. We shall ahow that thi8 impIie8 Eq8. 
(2.1). Without limiting generality we c8n aszmme that among I numbem p, thare are none 
which equal zero. We have 

1 = - uzl c~+~czO(~~) = i l;p, 16, (6, = sign p, sign F (c, tt)) 

h=O i=l 

NOW let us assume that some (e.g. the first m) of the nnmbem 6 are negative, Then 

1 = Ii I Pi I 6, = - 5 I I+ I + i 1 p, I 
i=t i=l km+1 

Eq. (1.2) then implies that I/.tll +...+ 1~4 = 0, which ia impo88ibIe. Hence, 8, = 1. 

29 Let co = (c i’,..., c, ‘) be some fixed set of value8 c, aatiafying condition (1.41, and 

let tiO< tzO<... < tro= T be those value8 of t, for which 

max ( F (co, t)l = IF (co, ti”) 1 = i tostaT) (2.2) 
Let us consider the small p-neighborhood of the point co defined by the condition8 

I Cl - et0 I f ei < P (i = i,..., n) 
Let L, be the set of all values ei belonging to the above p-neighborhood for which 

max 1 F(c, t)l i8 attained for 0 .< t = I, < 7’ which paasea, by continuity, to tjo, where-c - co. 

Being the minimw or maximum point of F(c, t), the value t, in one of the l olations of Eq. 
d F/d: = 0 under the condition r32F/3:2 f 0. From the theory of implicit functiona it follows 
that the function :j = t, (cl ia continuous and ha8 partial derivative8 with respect to c, if 

e E Lj. 
To within e12 we have n 

Fj - I F (ct tj (C)j I = I F (top $9 + igI (-& + 2 -$) Jc-co q 1 = 

=c 
( 

sign F (co, tj”) + i aF 1 
i=l aq <:=co 

ei) sign F (co , tj”) = 
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n 

II 1 + x (- I)‘-‘cp(“-” (tj”) ei sign F (c”, tj”) E i + @j. 

i==L 

It is necessary that rro= T, since otherwise a “hit” at the origin, which is a. singular 
point, would be impossible. 

Condition (2.2) implies that if t*# 0, T, then dF/% = 0. If either to = 0 or to= I’, then 
the instants are fixed and the derivative r?F/% does not appear in the expressions for Fo 
sttd Fr. Sinoe by the definition of the set LI we have 

it follows thnt 

i=min max IF(c,f)j==min (i+0) 
c,...cn Ogt<T Cl”‘.‘en 

Here 

8,x0 + . . . + .un4(“-L) = 0, @ = 0j for e E J$ (f = l,..., r) 

The fact that the sets L, are defined by the intersection of the mauifolds 0j = 0 linear 
in ei implies that the L1 form connected domains, each of which (provided it is nonempty) 
touches the origin (6 = 0). The totality of the domains Lt fills the entire pneighborhood, 
so that the function maxi F (c, t)l is defined everywhere in the p-neighborhood. Since no 
function can have two different values at the same point which are also maximum values, 
the function maxIF (e, :)I is also single-valued. (This means that the domains L, which do 
not coincide completely do not intersect in pairs). Finally, the continuity of the functions 
t (ef implies the continuity in the p-neighborhood of the functions max 1 F (c, t)l. The above 
I acts imply the following Lemma. 

L e m m a 2.2. Problem (2.3) breaks down into two independent problems, i.e. 
a) the quantities c,* and t,* are determined by the conditions 

max I 5 (- f)i-‘i_T#fi-l) (t) / -_ 1 i (- i)i-‘CiCp(i-‘) (tj) / zz 1 
og;tG ;tt 

(2.3) 
i=L 

c,q +. . . + cnro(“-l) z - 1 (2.4) 

bl The resulting tto must satisfy the conditions 

mitt 0 (e) = 0 (leil 6 P) (2.5) 

e, 2, + . *. + e, z*y = 0 (2.6) 

where @(a)) is a single-valued continuous function defined throughout the p-neighborhood 
by the conditions 

n 

0 (8)~ 2 (- i)'-'iJb('-"(fj")~~ Sip F (CO, tj”) 

i==l 

(8 E Lj) 

Here for each p and e E, tr we have the inequalities 

i 

7% 

(- i)i-lq(‘-l) (tj”) Q sign F (CO, tj”) >, 2 (- i)‘-$(*-“) (tp”) q’s@ F (co, t,,“) 

i=d i=1 

3’. Let UE establish the notstion ajr = (- 1)” 4” (t,‘) sign F(c*, t,‘) (2.7) and consider 
the mini5um of the function 10 (t) defined by the conditfons 

0 (e) = Uj,Ul + * - * + aImen (8 E $1 
(i = 1, . * ., r) (2.7) 

on linear mmifold (2.6). 
We begfn by showing that the function @(.a) has a minimu if and only if the condition 
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z > 0 is fulfilled for arbitrary ei not simnltaneoualy equal to zero, and for any I satisfying 

the condition t > @ (8). 
Necessity follows immediately from the minimum condition: a(8) > 0 (8 $0). Suffici- 

ency can be proved indirectly. Let the ine nality z >,a( 8) imply that I > 0 for any el and 

t, but let there exist a point e* for which $ ( e* ) < 0. Because I is arbitrary we can set 

t = @ ( e+ ) + 8, taking 6 > 0 sufficiently small. We then have t < 0 and z a@(e), which ia 

Let.ns write 

Tlj = (ajf et + . . . + a,,e,) - 2 (j = I,..., r) (2.8) 

What we have just proved implies that the function a( 8) has a minimum if and only if 

the inequality I > 0 follows from the system of conditions 

f ct by virtue of (2 7) if e E: d O”*.’ ‘Ir f ’ 

(2.9) 

I na, f . j, then 

i=l i=l 

If I ) a(e), then 7, < 0, so that qk \< 0. Conversely, the conditions q, > qk and v, ,< 0 

which are valid for e E Lj imply that z >@(e). 

Let h be the rankof the matrix I(oj,(l . If r >/II = h. it follows by (2.6) and (2.8) that the 

qnantities 7 + z, and therefore 7, aud I are related by exactly r - n + 1 independent linear 

relations. T h e inequality z > 0 evidently follows from conditions (2.9) if and only if JII and 
z are related by at least one linear dependence with coefficients of the same sign. Let us 
consider three cases. 

a) Let r = n = h. In this case 7, and z are related by just one linear dependence, i.e. by 

Eq. 

?-lit-z 

(2.10) 

or 

Mlrll + *a* + Mnlln + (Ml + a.0 + iv,) z = 0 
Here M is the algebraic complement of the j-tb element of determinant (2.10). The coef- 

ficients o this linear bundle are of the same sign only if I 

M,Mj > 0 (i, j = I,..., n) (2.11) 

Thus. conditions (2.11) are necessary and sufficient for the function a(e) to have a mini- 
mum. Clearly, this minimum attained at ‘the point e = 0 is isolated only if all of relations 
(2.11) are strict inequalities. In fact, i! one of the minors, e.g. M, , is equal to zero, then 
to make z vanish we need merely set q2 = . ..= T,, = 0. These equations are clearly satisfied 

not only by zero values of ei. 
In general the minimum of ‘the function a(E) attained at the point E = 0 ia isolated only 

if these does not exist a single linear relation with coefficienta of the same sign relating 
fewer than n quantities q, + 2. 

b) Let r > n = h. Evidently in this case there necessarily exist n quantities T), t ,..., qtn 

which together with (2.6) form a linear combination with coefficients of the same sign, hia 
means that the function a(e) haa a minimum if and only if among the r quantities 1 T. the 
are n whose nonpositiveness implies the inequality z > 0. Solving any n Ego. of (2.8), e.g. 
the first n Eqs. for 7, + t and setting the result into the remaining Eqa. of (2.8) and (2.6), 

we obtain 
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tl,+r= a,-,, 1 (z + 4 + * * * + a,,,, ttl,!+ I) 
O=al(ql+4+ ***+erneln+4 

Let IIS consider sll the possible linssr re)a&~~s 

Al eh+ 4 + --* +A, oh + 4 = 0 (2A3) 

fulfilled by virtue of system (2.12). 
Substituting into (2.13) OIU expressiona for v,,+t t z,..., 7, t I and equating to zero the 

coefficients of qt + s,..., q,, + Z, we find that 

-AAymA n++$ + * *+ Apt-np + 4! (v = I, . . ., n) (2.14) 
If the function 4 (0 haa a minimum, then there exists s relntion (2.13) in which all the 

A, which constitute the solution of syrtem (2.14) sre of the same sign. For example, let 

‘jk = tiko> 0. Sepcifyfng the quantities A”, +3,..., AFin system (2.14) snd reducing A,, t 
begtnning with A;+, , we find that at least one of the coefficients At,..., A,, A,+t, e.g. 
A e+t, vsnishes before the others do. This means that there exist A, > O,..., A,> 0 

A* (qp + x) + **. + A,(% + I) = 0 

where the sign of 9 t doea not affect the sign of z. 

Omitting the first Eq. In (2.8) and repeating the process r - n times, we see the validity 
of the sbovs ~tatemsnt. 

c) Let t <n . Relatfons of the (2.13) type then yield the system of Eqs. 

a~xAl+~~.+a,,A,+h~~=o 

. . . . . . . . . . . . . . . . . . (2.U) 
sl,,A~+*.~+a,~,A,+hzo!“-l)=o 

The erfatence of nonzero solutions of this system requires that the rank h of the matrix 
11a,, 11 be eqnsl to the rank of the matrix 

iz:_I . ::;;_,j (2.16) 

~d~sothsth\<r.Ftntleth~r~ddeto~pfO(~,~=r). 
Solving the first I Rqs. of (2.13) for A, and requiring that they all be of the same sign, 

we obtain the conditionm 

(- i)f+jM**iUj* > 0 (i, j = f, . . ., r) (2.17) 

which sre sfmflu to conditions (2.11). Let Mj* be the minor of the matrix (2.16) which we 
obtsfn by crossing out the j-th column from the latter. If h < r and det aA,, f 0 .& p = l,.,., h) 
wa obtafn s similar resalt in which the role of matrix (2.16) is played by the’mstrix 

on . . . alal z. 

. . . . . . . . . . . 

fzxh . . . am ZoW 

In both ceses @ = t, h <d the fmdon @,(&I hss a it&mm on the (n - Abdimen8ional 
linear manifold contsfnfng the point s = 0. Thus, the following Lemma is valid. 

L e m m a 2.3. Let the rak of the mstrfx 

I 

srx . . . art 

l%jll= . * . . . 

aXi . . a,n 

bs 1. This matrix the0 contdas A rows (if A,< n) or h colwn~a (if I > n) (e.g. the firet h rows 
or cobnd fmm ukich we CUL conotrsct the matrix. 
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*....,a...* 
(2.18) 

%,A** ‘h,h 
.#-11 

which has the following property (*): the function a(e) haa a minimum if and only if the 
pairwise products of the algebraic complements of the elements of its first row are nonneg- 
tive. This minimum attained at the point E = 0 is isolated{**) only in the case A -a. 

3. Reduction of the problem. Let the rank of thematrix 

11 Uij 11 = 11 (- i)i-lqJ(i-L’ (tj”) sign F (CO, tj") 11 

be n. We must find an expression for the minor MI* of the matrix 

II 

cp (61’) sign F (co, t,“) . . . cp (&“) sign F (co, fh) TO 

(- ~)~-'~'~-')(f,*)~i~n 8' (co, 1~~). . . (- ~)~-1~(~-1)(~~o)5i~R F(cO, tn@) =&n-l) 

obtained by crossing out its j-th column. Substituting in %a(*) from (1.81, we obtain 

Ml*= (- l)*Dp: sign F (LO, t?“) . _ . sign fi (co, Ino) 

Here D is the determinant of the matrix /of, 11 . Similarly, (3.f) 

Mj* = (- l)R-j+lD sign F(c”, tl”) . . . sign F (c”, lj_lo) pj sign I; (co, tj,,“) . . . sign F (co. t,,‘) 

Theorem 3.1. Onthenumberofpalsts( ***I. The namber r of p&es ~1 effecting 
time-optimal operation does not exceed the d~ensionality of the problem 

r<n (3.2) 

P r o o f. Let ua show that if r > a, then either the time T is not optimal or time-optimal 
operation is also realizable with a nnmber of pulses r S n. In fact, let r > n. I3y Lemma 2.3 
the conditions whereby Q(e) has a minimum are that 

&Mj = (- 1)‘+jY+*Mj* >, 0 (3.3) 

for each pair of minors M* of matrix (2.22). 
First let h = n. Let as define the new values pi’of the paleea by Formulas 

n 
-z&L) = 2 (- l)“q+ (tj) pi, ’ Pn+1= - * . = p*’ = 0 (3.4) 

i=1 

Making use of (2.11, (3.1)‘ and (3.31, we obtain 

MiMj = (- i)““*@ (&’ sign IQ) (l$Siglt pj) > 0 

Hence, 
(3.5) 

(tk’ sign IQ) (pj sign Pj) Z 0. 

On the other hand, conditions (2.3) and (2.1) imply fulfillmtmt of Eqs. 

Cl9 (11) + =. -+ (- i)n-‘Enqfn-l) (11) tii sign pz 
f . . . . * . ..* .,* .* .*..*, 

ClV (tn) + * * -+ (- 1)“~%$pf*--lf f&) CL signp, 

Cl2.0 + . . . + c,zo(“-f) z.z - 1 

From this we obtain 

I 
g) (ti) . . . (- 1 ylp~i) ttl) f43n PI 

I 
,.*...-............I 

I cp (&A . - . (- j)n-lf+F1) (tn) sign lkn = O 
I 

t 4 
,,(n-1) -i I 

‘1 Here aad below we l smme that matrices of the (2.18) type do not neceuuily contain the 
fimt column6 (rowa) of the matrix lolll ; we conaider them to hava bean rauumbered. 

(Footaotrr aontlno*d on n*ti page) 



134 L. ht. Maukhaahou 

By virtue of (3.4) tbia ia equivalent to Eq. 

(P(a) * * . (- fp-l)p-1) p,) 

. . * . . . . * . * * . . (i - pll sign -0 0 .- ptn’ Sign,) = 0 

91 (Q * * * (- ~)'q++"-l~ Qn) 

HWlC8, 

p~signpl+ . . . +fiu’&n pn= i (3.8) 
Comparing (3.5) and (3.61, we obtain 

pj’ Signpj> 0 (f = I,..., n), or sign pj = signpj 

Thus, if we know a time-optimal operating mode with r > II pulses occurring at the ins- 
tants tI,..., I~, then from these instants we can choose n (they are denoted by tl,..., ta in 
the proof) aad set pj equal to zero at the remaining instants, so that all the time optimslity 
conditions, i.e. (l.Sf, (2.11, and (2.3) to (2.61, are fulfilled. 

If it turns out here that 1, < T, then the initially determined 2’ is not optimal. For Ir < n 
we must carry out the proof using linear dependences among the elemmts of the matrix 
~~o,,\l as is done below in the proof of Theorem 3.3. The proof remains unchanged in other 

respects. Theorem has been proved. 
The above analysis of conditions (1.2) to (1.5) enables us to formulate the following 

result. 
T h e o r e m 3.2. The optimal control in the time-optimsi operation problem for Eq. 

(1.1) is a pulse control. The sum of absolute values of the controlling pulses fiI is maximal, 

11111+ *a- + lpf.1 = f 

The instants :I,..., t, when the pulses are applied are-determined by the solution of Prob- 

lem (2.3). 
The optimal operating time To is the smallest of all the 2’ which satisfy (2.31, hit condi- 

tions (1.8) where k = O,..., n - 1, snd conditions (2,l).for the signa of the pulses for each 
p, # 0. The number I of nonzero pulses satisfies the inequalities 

hdr,(n 

where h is the rank of the expanded matrix of system (1.8). 
P r o o f. According to Lemmas 2.1 and 2.2, conditions (2.31, (2.11, and (1.2) replace 

condition (1.4). The condition r< n is proved in Theorem 3.1. The inequality h( r is the 
condition of solvability of system (1.8). Taking into account Lemma 2.2, we muat show that 
conditions (2.5) and (2.6) are satisfied by virtue of the conditions of our theorem. Let us 
show this. 

We consider matrix (2.18) of bernma (2.3) which we shall have occasion to use below. 
Let its rank r be n. With allowance for conditions (2.1). Formulas (3.1) become 

Mj* = (- l)n+“D sign pl . . . sign pj_tpj sign pj+1 . . . sign p, 

Then 

M~Mj = (- I)‘+‘M**Mj+ = Ppi sign &/hj sign Gj = ir 1 pi I 1 Pj I >, 0 
According to Lemma 2.3 thin means that the function a(e) has a minimum (condition 

(2.5)) on manifold (2.6). 

(-i)"-'cp(n-l)(tl). . *(if - 4, - (t&f qp-1) n1 (al) 
I 

contain h linearly independent rowa (e.g. the first h row& There exist numbers Q~‘,H., 4.1’ 
snch tbat the relations 

Now let r = h <IL By agreement, the matrix 

r 

‘p PI) . . . cp(bt) %I 

. . . . . . ..I......*...*. 

(Footnotes contituurd from previorrr page) 
**I Lemmas 2.2 and 2.3 are related to the results of K. Carath&odory and N.C. Chebotarevf7k 
l 9 See also 131. 
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xoJ1) = al’,0 + s. -+ 
1 (h-1) 

ah x (z=h+i,...,n) 

(- i)Gf~(~) (ti) = a: cp (tt) + . . . + a? (- i)h-lcp(“-‘) (Ij) (Z=i,. . .,h) 

are valid. 
We have 

II h 

u+ = 2 (- l)j-lejcp(j-l) (tt)= 2 (- i)i-1e,3p(j-1) (t,) + 

j=l j=l 

+ $J (- l)t-le,&‘-l) (ti) = i (- i)j-lEjcp(j-l) (f{) 

1=11+1 $4 

where 

Eji=Sj+ i Ctj'-4+ (i= 1, . . .,h) 

l=h+l 

Similarly, 
h 

~110 +. . . + E,,zo(*-~) = 2 EjzD(j-l) 

j==l 

Now we need merely cite the first part of the proof of this theorem and Lemma 2.3. 

4. Apptoxinirtion of the function P(o, t) by polynomials. From Theorem 

3.2 we see that the principal difficulty of the initial problem lies in choosing the parameters 
c, of the function 

F (c, t) = i (- f)+lq,$‘-‘) (t) 

ial 

in such a way that the curve of this function on the segment [0, T] lies inside the atrip 

IFIc, c)I 4 1 and touch es its boundaries the required number of times r\< n. 
The fact that we can here ignore the behavior of the function F(c, t) outside the above 

strip enables UB to approximate it by the method described below. ‘lhe basic purpose of this 
approximation is to provide a means of effective computation of the instants t, of application 
of the pulses (i.e. of the points for which F(c, tj) = 1). 

Let us write 

F k t) = f W = f, 
akF (c t) 
( = f(k) tt) = j(k), 

atk 
+W (0) = 10’“’ 

where I is the solution of the differential Eq. 

ftn) = e,/(u-l) +. . .+ (-_i)*lanf 
Integrating Eq. (4.1) n times from 0 to t and transforming, we obtain 

(4.1) 

(4.2) 

where the subscript k at the integral siep denotes integration over t. If 14 f 4 - 1 on the 
segment [0, T] we obtain 

(- i) k-lak \ ’ jdt ( (- i)k-lak 'dt = (--i)k-lak $ a for 

r 

(- i)k-lakb> 0 

(--i)k-‘Ok s fdt > (-i)k-lak 5 dt = (-i)k-‘cZk $ for (-i)k-‘ok < 0 
*’ k 

Hence, 
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Y 
1.n =/o+ nx (/o(1)- 2 (- I)k%*f,cj)) “$ 

8==1 h+j=r 

If we take tbc polynomial I I,~= %cPt,,+ + Pt,,-1 as our first approximation for f, the 
error fo given by 

(4.4) 

M&ing IISCI of a&mate (4.3) of the lower and upper bounds, we can construct the next 
approximation ad my mimber of subsequent onen. 

Let P,$n < f< Pi, n , where P,,,,, are polynomials of degree mn; n is the number of 
the approximation. 

Let us define the functions 

.$+ = ‘/I [i -J. (- 1)k-l sign Ok] P,,;t + */s [if (- 1)“’ sign ok] Ii,,; 

El = l/S [1 + (- i)k-l sign ar] Pm,: + l/s [i - ( - i)k-l sign a~] Pm,;; 

Then cleerly. 

(- i)k--‘ah 1 E$ < (-l)%p s fdt d (- ijk-‘a* s F;ar 
k k 

Simplifying, we obtain 

(4.5) 

where 

I m+l,n 
2 

k+j=a 

L-1 k 

If we essume that fu Y,‘, this yields the folIowing recorrent formula for the apprn~fma- 

don error: 

Lctusshowtbatas m increases for any fixed A this error tends to zero unifonaiy with f 
on the segaent[O, T] i.e. that 
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In general, if 

then 

k=l k==l 

Thus, forO,<t,<T<=wehave 

This mcmm that A,,,,,, + 0 a* m + m. The coarscnesa of the above estimates ahow* that, 

in fact, the approximations converge much more rapidly for T <m If ak and 7’ are rrmall, 

then it ia enoogh to use the first approximation. 
Let us find the function which approximates the 4(t) appearing in Ffc, tl = fltl when fia 

approximated by the polynomial y I “. 
The formulas for converting fro&fo(k) to ci are of the form 

n---i 

j=O 

Hence, 

c n_8 = j- l)n-8 21 (- j)f+$,fo(j) 
k+jas 

so that 
n-1 

f= 2 (-i)n-%,_, -g , 
p-1 

-- 
n--l)1 

8=0 
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